Ежегодно около 120 миллионов единиц * донорской крови перетекают из донорских вен в пакеты для хранения в центрах сбора по всему миру. Жидкость упаковывается, обрабатывается и зарезервирована для дальнейшего использования. Но, оказавшись вне тела, накопленные эритроциты (эритроциты) постоянно портятся. К 42-му дню в большинстве стран продукты больше не используются.
В течение многих лет лаборатории использовали экспертные микроскопические исследования для оценки качества хранимой крови. Насколько жизнеспособна единица к 24 дню? Как насчет 37-го дня? В зависимости от того, что воспринимают глаза технических специалистов, ответы могут отличаться. Этот ручной процесс трудоемок, сложен и субъективен.
Теперь, после трех лет исследований, в исследовании, опубликованном в Proceedings of the National Academy of Sciences , представлены две новые стратегии автоматизации процесса и достижения объективной оценки качества RBC с соответствующими результатами и даже превзойти экспертную оценку.
Эти методики демонстрируют потенциал в сочетании искусственного интеллекта с современной визуализацией для решения давней биомедицинской проблемы. Если его стандартизировать, он может обеспечить более последовательные и точные оценки с повышенной эффективностью и лучшими результатами для пациентов.
Обученные машины соответствуют оценке экспертов
Междисциплинарное сотрудничество охватило пять стран, двенадцать институтов и девятнадцать авторов, включая университеты, исследовательские институты и центры сбора крови в Канаде, США, Швейцарии, Германии и Великобритании. Исследованием руководили вычислительный биолог Энн Карпентер из Института Броуда Гарварда и Массачусетского технологического института, физик Майкл Колиос из физического факультета Университета Райерсона и Джейсон Аккер из Канадской службы крови.
Сначала они исследовали, можно ли научить нейронную сеть «видеть» на изображениях эритроцитов те же шесть категорий деградации клеток, что и специалисты-люди. Для создания необходимого огромного количества изображений решающую роль сыграла визуализирующая проточная цитометрия. Джозеф Себастьян, соавтор и студент Райерсона, тогда работавший под руководством Колиоса, объясняет.
«С помощью этого метода эритроциты приостанавливаются и пропускаются через цитометр — инструмент, который делает тысячи изображений отдельных клеток крови в секунду. Затем мы можем исследовать каждый эритроцит, не трогая их и не повреждая их непреднамеренно, что иногда случается во время микроскопических исследований. . «
Исследователи использовали 40 900 изображений клеток, чтобы обучить нейронные сети классифицировать эритроциты по шести категориям — в коллекции, которая в настоящее время является крупнейшей в мире свободно доступной базой данных эритроцитов, индивидуально аннотированных с различными категориями порчи. p >
При тестировании алгоритм машинного обучения достиг 77% согласия с экспертами-людьми. Хотя коэффициент ошибок в 23% может показаться высоким, полностью соответствовать мнению эксперта в этом тесте невозможно: даже эксперты-люди соглашаются только в 83% случаев. Таким образом, эта полностью контролируемая модель машинного обучения может быть эффективной для замены утомительного визуального осмотра людьми с небольшой потерей точности.
Тем не менее, команда задалась вопросом: может ли другая стратегия еще больше расширить верхние пределы точности?
Машины превосходят человеческое зрение, обнаруживают клеточные тонкости
Во второй части исследования исследователи полностью отказались от участия человека и разработали альтернативную, «слабо контролируемую» модель глубокого обучения, в которой нейронные сети узнавали о деградации эритроцитов самостоятельно.
Вместо того, чтобы обучаться шести визуальным категориям, используемым экспертами, машины обучались исключительно путем анализа более миллиона изображений эритроцитов, не классифицированных и упорядоченных только по продолжительности хранения крови. В конце концов, машины правильно распознали особенности отдельных эритроцитов, которые соответствуют переходу от здоровых клеток к нездоровым.
«Позволить компьютеру научиться прогрессировать накопленные эритроциты по мере их разрушения — это действительно захватывающее событие, — говорит Карпентер, — особенно потому, что он может фиксировать более тонкие изменения в клетках, которые люди не распознают» <. / p>
При сравнении с другими релевантными тестами, такими как биохимический анализ, слабо обученные машины предсказывали качество эритроцитов лучше, чем нынешний метод оценки из шести категорий, используемый экспертами.
Стратегии глубокого обучения: качество крови и не только
До того, как модель будет готова к клиническим испытаниям, все еще необходимо дополнительное обучение, но перспективы многообещающие. Полностью контролируемая модель машинного обучения вскоре сможет автоматизировать и упростить текущий ручной метод, сводя к минимуму обработку образцов, расхождения и процедурные ошибки при оценке качества крови.
Вторая, альтернативная, слабо контролируемая структура может еще больше исключить человеческую субъективность из процесса. Объективные и точные прогнозы качества крови позволят врачам лучше персонализировать продукты крови для пациентов. Помимо хранимой крови, стратегия глубокого обучения, основанная на времени, может быть перенесена на другие приложения, связанные с хронологической прогрессией, например, с распространением рака.
«Люди раньше спрашивали, какая альтернатива ручному процессу», — говорит Колиос. «Теперь мы разработали подход, который объединяет передовые разработки из нескольких дисциплин, включая вычислительную биологию, трансфузионную медицину и медицинскую физику. Это свидетельство того, как технологии и наука теперь взаимосвязаны для решения сегодняшних биомедицинских проблем». p>
* Данные предоставлены Всемирной организацией здравоохранения