Алгоритм, который работает так же точно, как дерматологи

В настоящее время представлено исследование, которое подтверждает доказательства использования решений искусственного интеллекта в диагностике рака кожи. С помощью алгоритма, который они разработали сами, ученые из Гетеборгского университета демонстрируют способность технологий работать на том же уровне, что и дерматологи, при оценке серьезности меланомы кожи.

Исследование, опубликованное в Журнале Американской академии дерматологии , и его результаты являются результатом работы исследовательской группы кафедры дерматологии и венерологии Академии Сальгренска Гетеборгского университета.

Исследование проводилось в больнице Sahlgrenska University в Гетеборге. Его цель заключалась в том, чтобы с помощью машинного обучения (ML) обучить алгоритм для определения того, является ли меланома кожи инвазивной и существует ли риск ее распространения (метастатирования), или остается ли она на стадии роста, при которой она ограничена эпидермисом. , без риска метастазирования.

Алгоритм был обучен и проверен на 937 дерматоскопических изображениях меланомы, а затем протестирован на 200 случаях. Все включенные случаи были диагностированы дерматопатологом.

Большинство меланом обнаруживают не врачи, а пациенты. Это говорит о том, что в большинстве случаев диагностика относительно проста. Однако до операции зачастую бывает гораздо труднее определить стадию меланомы.

Чтобы классификации были более точными, дерматологи используют дерматоскопы – инструменты, сочетающие в себе вид увеличительного стекла с ярким освещением. В последние годы возрос интерес к использованию ML для классификации опухолей кожи, и несколько публикаций показали, что алгоритмы ML могут работать на уровне или даже лучше, чем у опытных дерматологов.

Текущее исследование дает дополнительный импульс исследованиям в этой области. Когда одна и та же задача классификации была выполнена алгоритмом, с одной стороны, и семью независимыми дерматологами, с другой, результат был ничейным.

«Ни один из дерматологов не смог существенно превзойти алгоритм машинного обучения», – утверждает Сэм Полесье, исследователь из Университета Гетеборга и врач-специалист в Университетской больнице Сальгренска, который является автором исследования.

В развитой форме алгоритм может служить вспомогательным средством при оценке степени тяжести меланомы кожи перед операцией. Классификация влияет на то, насколько обширной должна быть операция, и поэтому важна как для пациента, так и для хирурга.

«Результаты исследования интересны, и есть надежда, что алгоритм может быть использован в качестве поддержки принятия клинических решений в будущем. Но он требует дальнейшей доработки, а также необходимы проспективные исследования, позволяющие контролировать пациентов во времени», – заключает Полесье.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *